Parityizing Rabin and Streett

نویسندگان

  • Udi Boker
  • Orna Kupferman
  • Avital Steinitz
چکیده

The parity acceptance condition for ω-regular languages is a special case of the Rabin and Streett acceptance conditions. While the parity acceptance condition is as expressive as the richer conditions, in both the deterministic and nondeterministic settings, Rabin and Streett automata are more succinct, and their translation to parity automata may blow-up the state space. The appealing properties of the parity condition, mainly the fact it is dualizable and allows for memoryless strategies, make such a translation useful in various decision procedures. In this paper we study languages that are recognizable by an automaton on top of which one can define both a Rabin and a Streett condition for the language. We show that if the underlying automaton is deterministic, then we can define on top of it also a parity condition for the language. We also show that this relation does not hold in the nondeterministic setting. Finally, we use the construction of the parity condition in the deterministic case in order to solve the problem of deciding whether a given Rabin or Streett automaton has an equivalent parity automaton on the same structure, and show that it is PTIME-complete in the deterministic setting and is PSPACE-complete in the nondeterministic setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strategy Improvement for Stochastic Rabin and Streett Games

A stochastic graph game is played by two players on a game graph with probabilistic transitions. We consider stochastic graph games with ω-regular winning conditions specified as Rabin or Streett objectives. These games are NP-complete and coNP-complete, respectively. The value of the game for a player at a state s given an objective Φ is the maximal probability that the player can guarantee th...

متن کامل

Strategy Construction in Infinite Ganes with Streett and Rabin Chain Winning Conditions

We consider nite-state games as a model of nonterminating reactive computations. A natural type of speciication is given by games with Streett winning condition (corresponding to automata accepting by conjunctions of fairness conditions). We present an algorithm which solves the problem of program synthesis for these speciications. We proceed in two steps: First, we give a reduction of Streett ...

متن کامل

Complexity of Topological Properties of Regular ω-Languages

We determine the complexity of topological properties (i.e., properties closed under the Wadge equivalence) of regular ω-languages by showing that they are typically NL-complete (PSPACEcomplete) for the deterministic Muller, Mostowski and Büchi automata (respectively, for the nondeterministic Rabin, Muller, Mostowski and Büchi automata). For the deterministic Rabin and Streett automata and for ...

متن کامل

Generalized Parity Games

We consider games where the winning conditions are disjunctions (or dually, conjunctions) of parity conditions; we call them generalized parity games. These winning conditions, while ω-regular, arise naturally when considering fair simulation between parity automata, secure equilibria for parity conditions, and determinization of Rabin automata. We show that these games retain the computational...

متن کامل

The Complexity of Stochastic Rabin and Streett Games'

The theory of graph games with ω-regular winning conditions is the foundation for modeling and synthesizing reactive processes. In the case of stochastic reactive processes, the corresponding stochastic graph games have three players, two of them (System and Environment) behaving adversarially, and the third (Uncertainty) behaving probabilistically. We consider two problems for stochastic graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010